Date of Degree

10-2014

Document Type

Dissertation

Degree Name

Ph.D.

Program

Computer Science

Advisor

Yingli Tian

Subject Categories

Computer Sciences

Keywords

Blind Assistance, Complex Background Outlier Removal, Mutliple Text Pattern Modeling, Scene Text Extraction, Text Detection, Text Recognition

Abstract

With the popularity of the Internet and the smart mobile device, there is an increasing demand for the techniques and applications of image/video-based analytics and information retrieval. Most of these applications can benefit from text information extraction in natural scene. However, scene text extraction is a challenging problem to be solved, due to cluttered background of natural scene and multiple patterns of scene text itself. To solve these problems, this dissertation proposes a framework of scene text extraction.

Scene text extraction in our framework is divided into two components, detection and recognition. Scene text detection is to find out the regions containing text from camera captured images/videos. Text layout analysis based on gradient and color analysis is performed to extract candidates of text strings from cluttered background in natural scene. Then text structural analysis is performed to design effective text structural features for distinguishing text from non-text outliers among the candidates of text strings. Scene text recognition is to transform image-based text in detected regions into readable text codes. The most basic and significant step in text recognition is scene text character (STC) prediction, which is multi-class classification among a set of text character categories. We design robust and discriminative feature representations for STC structure, by integrating multiple feature descriptors, coding/pooling schemes, and learning models. Experimental results in benchmark datasets demonstrate the effectiveness and robustness of our proposed framework, which obtains better performance than previously published methods.

Our proposed scene text extraction framework is applied to 4 scenarios, 1) reading print labels in grocery package for hand-held object recognition; 2) combining with car detection to localize license plate in camera captured natural scene image; 3) reading indicative signage for assistant navigation in indoor environments; and 4) combining with object tracking to perform scene text extraction in video-based natural scene. The proposed prototype systems and associated evaluation results show that our framework is able to solve the challenges in real applications.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.