Date of Degree


Document Type


Degree Name



Computer Science


Elizabeth I. Sklar


Argumentation-based Dialogue; Human-Robot Collaboration; Human-Robot Interaction


Successful human-robot collaboration with a common goal requires peer interaction in which humans and robots cooperate and complement each other's expertise. Formal human-robot dialogue in which there is peer interaction is still in its infancy, though. My research recognizes three aspects of human-robot collaboration that call for dialogue: responding to discovery, pre-empting failure, and recovering from failure. In these scenarios the partners need the ability to challenge, persuade, exchange and expand beliefs about a joint action in order to collaborate through dialogue.

My research identifies three argumentation-based dialogues: a persuasion dialogue to resolve disagreement, an information-seeking dialogue to expand individual knowledge, and an inquiry dialogue to share knowledge. A theoretical logic-based framework, a formalized dialogue protocol based on argumentation theory, and argumentation-based dialogue games were developed to provide dialogue support for peer interaction. The work presented in this thesis is the first to apply argumentation theory and three different logic-based argumentation dialogues for use in human-robot collaboration. The research presented in this thesis demonstrates a practical, real-time implementation in which persuasion, inquiry, and information-seeking dialogues are applied to shared decision making for human-robot collaboration in a treasure hunt game domain. My research investigates if adding peer interaction enabled through argumentation-based dialogue to an HRI system improves system performance and user experience during a collaborative task when compared to an HRI system that is capable of only supervisory interaction with minimal dialogue. Results from user studies in physical and simulated human-robot collaborative environments, which involved 108 human participants who interacted with a robot as peer and supervisor, are presented in this thesis. My research contributes to both the human-robot interaction (HRI) and the argumentation communities. First, it brings into HRI a structured method for a robot to maintain its beliefs, to reason using those beliefs, and to interact with a human as a peer via argumentation-based dialogues. The structured method allows the human-robot collaborators to share beliefs, respond to discovery, expand beliefs to recover from failure, challenge beliefs, or resolve conflicts by persuasion. It allows a robot to challenge a human or a human to challenge a robot to prevent human or robot errors. Third, my research provides a comprehensive subjective and objective analysis of the effectiveness of an HRI System with peer interaction that is enabled through argumentation-based dialogue. I compare this peer interaction to a system that is capable of only supervisory interaction with minimal dialogue. My research contributes to the harder questions for human-robot collaboration: what kind of human-robot dialogue support can enhance peer-interaction? How can we develop models to formalize those features? How can we ensure that those features really help, and how do they help?

Human-robot dialogue that can aid shared decision making, support the expansion of individual or shared knowledge, and resolve disagreements between collaborative human-robot teams will be much sought after as human society transitions from a world of robot-as-a-tool to robot-as-a-partner. My research presents a version of peer interaction enabled through argumentation-based dialogue that allows humans and robots to work together as partners.