Publications and Research

Document Type

Article

Publication Date

2021

Abstract

There is growing interest in using strongly coupled organic microcavities to tune molecular dynamics, including the electronic and vibrational properties of molecules. However, very little attention has been paid to the utility of cavity polaritons as sensors for out-of-equilibrium phenomena, including thermal excitations. Here, we demonstrate that non-resonant infrared excitation of an organic microcavity system induces a transient response in the visible spectral range near the cavity polariton resonances. We show how these optical responses can be understood in terms of ultrafast heating of electrons in the metal cavity mirror, which modifies the effective refractive index and subsequently the strong coupling conditions. The temporal dynamics of the microcavity are strictly determined by carriers in the metal, including the cooling of electrons via electron–phonon coupling and excitation of propagating coherent acoustic modes in the lattice. We rule out multiphoton excitation processes and verify that no real polariton population exists despite their strong transient features. These results suggest the cavity polaritons to be promising as sensitive probes of non-equilibrium phenomena.

Comments

This article was originally published in APL Photonics, available at https://doi.org/10.1063/5.0031560

This work is distributed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.