Student Type


Document Type


Publication Date



Let p_b(n) be the number of integer partitions of n whose parts are powers of b. For each m there is a generating function identity:

f_m(b,q)\sum_{n} p_b(n) q^n = (1-q)^m \sum_{n} p_b(b^m n q)q^n

where n ranges over all integer values. The proof of this identity appears in the doctoral thesis of the author. For more information see

This dataset is a JSON object with keys m from 1 to 23 whose values are f_m(b,q).