Publications and Research

Document Type


Publication Date



RNA-Seq is increasingly being used to measure human RNA expression on a genome-wide scale. Expression profiles can be interrogated to identify and functionally characterize treatment-responsive genes. Ultimately, such controlled studies promise to reveal insights into molecular mechanisms of treatment effects, identify biomarkers, and realize personalized medicine. RNA-Seq Reports (RSEQREP) is a new open-source cloud-enabled framework that allows users to execute start-to-end gene-level RNA-Seq analysis on a preconfigured RSEQREP Amazon Virtual Machine Image (AMI) hosted by AWS or on their own Ubuntu Linux machine. The framework works with unstranded, stranded, and paired-end sequence FASTQ files stored locally, on Amazon Simple Storage Service (S3), or at the Sequence Read Archive (SRA). RSEQREP automatically executes a series of customizable steps including reference alignment, CRAM compression, reference alignment QC, data normalization, multivariate data visualization, identification of differentially expressed genes, heatmaps, co-expressed gene clusters, enriched pathways, and a series of custom visualizations. The framework outputs a file collection that includes a dynamically generated PDF report using R, knitr, and LaTeX, as well as publication-ready table and figure files. A user-friendly configuration file handles sample metadata entry, processing, analysis, and reporting options. The configuration supports time series RNA-Seq experimental designs with at least one pre- and one post-treatment sample for each subject, as well as multiple treatment groups and specimen types. All RSEQREP analyses components are built using open-source R code and R/Bioconductor packages allowing for further customization. As a use case, we provide RSEQREP results for a trivalent influenza vaccine (TIV) RNA-Seq study that collected 1 pre-TIV and 10 post-TIV vaccination samples (days 1-10) for 5 subjects and two specimen types (peripheral blood mononuclear cells and B-cells).


This article was originally published in F100 Research, available at doi: 10.12688/f1000research.13049.2.

This is an open access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0)

Included in

Genomics Commons


To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.