Publications and Research
Document Type
Article
Publication Date
Spring 2017
Abstract
Homogeneous and crack-free methyl-substituted organic–inorganic hybrid glass coatings (thickness up to 10 μm) were deposited on AISI 304 stainless steel. Different hybrid glasses obtained fromconsolidation of the diluted melting gels with various methyltriethoxysilane (MTES)/dimethyldiethoxysilane (DMDES) ratios were evaluated considering chemical structure, coating adhesion and corrosion protection. The 70MTES/30DMDES (molar%) melting-gel coating provided improved corrosion protection for this steel due to the synergy of different properties: a highly cross-linked inorganic structure, a coating plasticity based on the hybrid network, and a good adhesion to the substrate through hydroxyl groups. Electrochemical results showa good barrier film with a passive range of 500 mV, a lowanodic current density (0.03 nA cm−2) and impedance values of 109.5Ωcm2 after two months of immersion in 3.5 wt.% NaCl solution.
Comments
This article was originally published in Surface and Coatings Technology, available at http://dx.doi.org/10.1016/j.surfcoat.2017.02.059.