Publications and Research

Document Type

Article

Publication Date

4-23-2019

Abstract

Objective. To develop software to assess the potential aggressiveness of an incidentally detected renal mass using images. Methods. Thirty randomly selected patients who underwent nephrectomy for renal cell carcinoma (RCC) had their images independently reviewed by engineers. Tumor “Roughness” was based on image algorithm of tumor topographic features visualized on computed tomography (CT) scans. Univariant and multivariant statistical analyses are utilized for analysis. Results. We investigated 30 subjects that underwent partial or radical nephrectomy. After excluding poor image-rendered images, 27 patients remained (benign cyst = 1, oncocytoma = 2, clear cell RCC = 15, papillary RCC = 7, and chromophobe RCC = 2). The mean roughness score for each mass is 1.18, 1.16, 1.27, 1.52, and 1.56 units, respectively (p<0.004). Renal masses were correlated with tumor roughness (Pearson’s, p=0.02). However, tumor size itself was larger in benign tumors (p=0.1). Linear regression analysis noted that the roughness score is the most influential on the model with all other demographics being equal including tumor size (p=0.003). Conclusion. Using basic CT imaging software, tumor topography (“roughness”) can be quantified and correlated with histologies such as RCC subtype and could lead to determining aggressiveness of small renal masses.

Comments

This work was originally published in Advances in Urology available at https://doi.org/10.1155/2019/3590623

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.