Publications and Research

Document Type

Article

Publication Date

July 1967

Abstract

The metachromatic dye, azure B, was analyzed by microspectrophotometry when bound to DNA fibers and DNA in nuclei with condensed and dispersed chromatin. The interaction of DNA and protein was inferred from the amount of metachromasy (increased β/α-peak) of azure B that resulted after specific removal of various protein fractions. Dye bound to DNA-histone fibers and frog liver nuclei fixed by freeze-methanol substitution shows orthochromatic, blue-green staining under specific staining conditions, while metachromasy (blue or purple color) results from staining DNA fibers without histone or tissue nuclei after protein removal. The dispersed chromatin of hepatocytes was compared to the condensed chromatin of erythrocytes to see whether there were differences in DNA-protein binding in "active" and "inactive" nuclei. Extraction of histones with 0.02 N HCl, acidified alcohol, perchloric acid, and trypsin digestion all resulted in increased dye binding. The amount of metachromasy varied, however; removal of "lysine-rich" histone (extractable with 0.02 N HCl) caused a blue color, and a purplish-red color (µ-peak absorption) resulted from prolonged trypsin digestion. In all cases, the condensed and the dispersed chromatin behaved in the same way, indicating the similarity of protein bound to DNA in condensed and dispersed chromatin. The results appear to indicate that "lysine-rich" histone is bound to adjacent anionic sites of a DNA molecule and that nonhistone protein is located between adjacent DNA molecules in both condensed and dispersed chromatin.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.