Publications and Research

Document Type

Article

Publication Date

2011

Abstract

We study the interplay of thermal and diffractive effects in Casimir energies. We consider plates with edges, oriented either parallel or perpendicular to each other, as well as a single plate with a slit. We compute the Casimir energy at finite temperature using a formalism in which the diffractive effects are encoded in a lower dimensional non-local field theory that lives in the gap between the plates. The formalism allows for a clean separation between direct or geometric effects and diffractive effects, and makes an analytic derivation of the temperature dependence of the free energy possible. At low temperatures, with Dirichlet boundary conditions on the plates, we find that diffractive effects make a correction to the free energy which scales as T^6 for perpendicular plates, as T^4 for slits, and as T^4 log T for parallel plates.

Comments

This work was originally published in Physical Review D - Particles, available at DOI: 10.1103/PhysRevD.84.065029.

Included in

Physics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.