Publications and Research

Document Type

Article

Publication Date

12-18-2019

Abstract

A widespread class of prokaryotic motors powered by secretion motor adenosine triphosphatases (ATPases) drives the dynamic extension and retraction of extracellular fibers, such as type IV pili (T4P). Among these, the tight adherence (tad) pili are critical for surface sensing and biofilm formation. As for most other motors belonging to this class, how tad pili retract despite lacking a dedicated retraction motor ATPase has remained a mystery. Here, we find that a bifunctional pilus motor ATPase, CpaF, drives both activities through adenosine 5′-triphosphate (ATP) hydrolysis. We show that mutations within CpaF result in a correlated reduction in the rates of extension and retraction that directly scales with decreased ATP hydrolysis and retraction force. Thus, a single motor ATPase drives the bidirectional processes of pilus fiber extension and retraction.

Comments

This work was originally published in Science Advances, available at DOI: 10.1126/sciadv.aay2591

Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.