Publications and Research
Document Type
Article
Publication Date
Winter 1-22-2019
Abstract
Although the World Health Organization declared an end to the recent Zika virus (ZIKV) outbreak and its association with adverse fetal and pediatric outcome, on November 18, 2016, the virus still remains a severe public health threat. Laboratory experiments thus far supported the suspicions that ZIKV is a teratogenic agent. Evidence indicated that ZIKV infection cripples the host cells' innate immune responses, allowing productive replication and potential dissemination of the virus. In addition, studies suggest potential transplacental passage of the virus and subsequent selective targeting of neural progenitor cells (NPCs). Depletion of NPCs by ZIKV is associated with restricted brain growth. And while microcephaly can result from infection at any gestational stages, the risk is greater during the first trimester. Although a number of recent studies revealed some of specific molecular and cellular roles of ZIKV proteins of this mosquito-borne flavivirus, the mechanisms by which it produces it suspected pathophysiological effects are not completely understood. Thus, this review highlights the cellular and molecular evidence that implicate ZIKV in fetal and pediatric neuropathologies.
Included in
Biochemistry, Biophysics, and Structural Biology Commons, Biology Commons, Cell and Developmental Biology Commons