Document Type

Presentation

Publication Date

8-1-2014

Abstract

We present a variational data assimilation approach based on a Moving Horizon Estimation (MHE) applied to the HBV hydrological model. This framework enables the modification of the model inputs precipitation and temperature as well as the model states soil moisture, upper zone storage and lower zone storage. It considers data products for snow cover, snow water equivalent and soil moisture and observed streamflow. The performance of the framework is evaluated for three test sites: i) the data–dense catchment of the upper Main River (2419 km2), Germany, for which the HBV model already produces excellent results, ii) a comparable upstream catchment of the Nahe River (1468 km2), Germany, and iii) a data-sparse environment in the upper basin of Karasu River in Turkey (10,275 km2). The added value of the data assimilation approach is relatively limited in the case of (i) and (ii), but more substantial for the data-sparse environment (iii) with only a limited amount of operational ground data.

Comments

Session R48, Data Processing: Data to Computations

 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.