Publications and Research

Document Type

Article

Publication Date

4-23-2015

Abstract

Background: Excitotoxicity (the toxic overstimulation of neurons by the excitatory transmitter Glutamate) is a central process in widespread neurodegenerative conditions such as brain ischemia and chronic neurological diseases. Many mechanisms have been suggested to mediate excitotoxicity, but their significance across diverse excitotoxic scenarios remains unclear. Death Associated Protein Kinase (DAPK), a critical molecular switch that controls a range of key signaling and cell death pathways, has been suggested to have an important role in excitotoxicity. However, the molecular mechanism by which DAPK exerts its effect is controversial. A few distinct mechanisms have been suggested by single (sometimes contradicting) studies, and a larger array of potential mechanisms is implicated by the extensive interactome of DAPK.

Results: Here we analyze a well-characterized model of excitotoxicity in the nematode C. elegans to show that DAPK is an important mediator of excitotoxic neurodegeneration across a large evolutionary distance. We further show that some proposed mechanisms of DAPK’s action (modulation of synaptic strength, involvement of the DANGER-related protein MAB-21, and autophagy) do not have a major role in nematode excitotoxicity. In contrast, Pin1/PINN-1 (a DAPK interaction-partner and a peptidyl-prolyl isomerase involved in chronic neurodegenerative conditions) suppresses neurodegeneration in our excitotoxicity model.

Conclusions: Our studies highlight the prominence of DAPK and Pin1/PINN-1 as conserved mediators of cell death processes in diverse scenarios of neurodegeneration.

Comments

This article originally appeared in BMC Neuroscience, available at DOI 10.1186/s12868-015-0158-2

© 2015 Del Rosario et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.