Date of Degree

6-2014

Document Type

Dissertation

Degree Name

Ph.D.

Program

Biochemistry

Advisor(s)

Frida E. Kleiman

Subject Categories

Biochemistry | Biology

Keywords

BRCA1/BARD1, chromatin remodeling, CstF-50, mRNA processing, p97, Ubiquitin pathway

Abstract

The cellular response to DNA damage is an intricate mechanism that involves the interplay among several pathways. The studies presented in this dissertation focus on the determination and characterization of the role of mRNA processing factor CstF-50 and escort protein p97 in the regulation of the BRCA1/BARD1 E3 ubiquitin (Ub) ligase activity during the DNA damage response (DDR).

As part of the studies presented in Chapter II, I determined that the polyadenylation factor CstF plays a direct role in DDR, specifically in transcription-coupled repair (TCR), and that it localizes with RNA polymerase II (RNAP II) and BARD1 to sites of repaired DNA. My results also indicated that CstF plays a role in the UV-induced ubiquitination and degradation of RNAP II. In Chapter III, I determined that the carboxy-terminal domain of p53 associates with factors that are required for the ultraviolet (UV)-induced inhibition of the mRNA 3' cleavage step of the polyadenylation reaction, such as the tumor suppressor BARD1 and the polyadenylation factor CstF-50. These results were part of a study that identified a novel 3' RNA processing inhibitory function of p53, adding a new level of complexity to the DDR by linking RNA processing to the p53 network. In addition, in Chapter IV I showed that CstF-50 can interact not only with BRCA1/BARD1 E3 Ub ligase but also with ubiquitin (Ub), the escort-factor p97 and some of BRCA1/BARD1 substrates, such as RNAP II, H2A and H2B. I also demonstrate that CstF-50-associated p97 activates the BRCA1/BARD1-dependent RNAP II poly-ubiquitination, H2A and H2B monoubiquitination as well as BRCA1/BARD1 autoubiquitination. Together my results provide evidence that CstF-50-associated p97 regulates BRCA1/BARD1 Ub ligase activity during DDR, helping in the assembly and/or stabilization of the ubiquitination complex. Extending these studies, in Chapter V, I showed that UV-treatment induces changes in the localization of BRCA1, BARD1, CstF-50, p97 and some of BRCA1/BARD1 substrates in different nuclear fractions, and that these changes depend on BRCA1/BARD1 and CstF-50 expression. Further, my results demonstrate that the content of monoubiquitinated H2B in the chromatin of genes with different levels of expression changes during DDR and this is mediated by BRCA1/BARD1 and CstF-50. The data presented in this chapter show new insights into the role of mRNA 3' processing factor CstF-50 in regulating the Ub pathway, resulting in epigenetic control during DDR. Finally, in Chapter VI, I identified the RNA binding protein HuR as a new substrate for BRCA1/BARD1/CstF-50/p97 Ub ligase activity in different cellular conditions.

All together, the studies presented in this dissertation revealed unexpected insights into the role of the RNA processing factor CstF-50, tumor suppressors BRCA1/BARD1 and p53, the Ub pathway and chromatin structure during DDR.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.