Dissertations, Theses, and Capstone Projects

Date of Degree


Document Type


Degree Name





Delaram Kahrobaei

Subject Categories



cryptography, group theory


In this work, my advisor Delaram Kahrobaei, our collaborator David Garber, and I explore polycyclic groups generated from number fields as platform for the AAG key-exchange protocol. This is done by implementing four different variations of the length-based attack, one of the major attacks for AAG, and submitting polycyclic groups to all four variations with a variety of tests. We note that this is the first time all four variations of the length-based attack are compared side by side. We conclude that high Hirsch length polycyclic groups generated from number fields are suitable for the AAG key-exchange protocol.

Delaram Kahrobaei and I also carry out a similar strategy with the Heisenberg groups, testing them as platform for AAG with the length-based attack. We conclude that the Heisenberg groups, with the right parameters are resistant against the length-based attack.

Another work in collaboration with Delaram Kahrobaei and Vladimir Shpilrain is to propose a new platform semigroup for the HKKS key-exchange protocol, that of matrices over a Galois field. We discuss the security of HKKS under this platform and advantages in computation cost. Our implementation of the HKKS key-exchange protocol with matrices over a Galois field yields fast run time.

Included in

Mathematics Commons