Date of Degree


Document Type


Degree Name





Jesenko Vukadinovic

Committee Members

Olympia Hadjiliadis

Zeno Huang

Tobias Schafer

Subject Categories

Analysis | Fluid Dynamics | Partial Differential Equations


Advection, Diffusion, Dissipation


We study the Cauchy problem for the advection-diffusion equation when the diffusive parameter is vanishingly small. We consider two cases - when the underlying flow is a shear flow, and when the underlying flow is generated by a Hamiltonian. For the former, we examine the problem on a bounded domain in two spatial variables with Dirichlet boundary conditions. After quantizing the system via the Fourier transform in the first spatial variable, we establish the enhanced-dissipation effect for each mode. For the latter, we allow for non-degenerate critical points and represent the orbits by points on a Reeb graph, with vertices representing critical points or connected components of the boundary. A transformation to action-angle coordinates allows for angle-averaging, which in turn allows for quantizing in a similar fashion to the shear flow. The resulting system is an effective diffusion equation (trivial quantum number) paired with a countable family of Schrodinger equations (nontrivial quantum numbers). For the latter, we are able to construct a Lyapunov functional with enhanced characteristic time scales which are much shorter than the inverse of the diffusivity. We apply tools from non-self-adjoint spectral theory to infer enhanced rates of dissipation of the semigroup evolution operator, and we show that the solution of the advection-diffusion equation converges to the solution of the effective diffusion equation as the diffusive parameter becomes vanishingly small.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.