Date of Degree


Document Type


Degree Name



Computer Science


Kaliappa Ravindran

Committee Members

Jie Wei

Umit Uyar

Masum Hasan

Subject Categories

Computer Engineering


Quality of Service (QoS), Service-level Management, Model-based Engineering, Machine Intelligence Tools, Assessment-as-a-service, Cloud-induced Uncertainties, Complex Systems Theory, Distributed/Replicated Services


The issue of less-than-100% reliability and trust-worthiness of third-party controlled cloud components (e.g., IaaS and SaaS components from different vendors) may lead to laxity in the QoS guarantees offered by a service-support system S to various applications. An example of S is a replicated data service to handle customer queries with fault-tolerance and performance goals. QoS laxity (i.e., SLA violations) may be inadvertent: say, due to the inability of system designers to model the impact of sub-system behaviors onto a deliverable QoS. Sometimes, QoS laxity may even be intentional: say, to reap revenue-oriented benefits by cheating on resource allocations and/or excessive statistical-sharing of system resources (e.g., VM cycles, number of servers). Our goal is to assess how well the internal mechanisms of S are geared to offer a required level of service to the applications. We use computational models of S to determine the optimal feasible resource schedules and verify how close is the actual system behavior to a model-computed 'gold-standard'. Our QoS assessment methods allow comparing different service vendors (possibly with different business policies) in terms of canonical properties: such as elasticity, linearity, isolation, and fairness (analogical to a comparative rating of restaurants). Case studies of cloud-based distributed applications are described to illustrate our QoS assessment methods.

Specific systems studied in the thesis are: i) replicated data services where the servers may be hosted on multiple data-centers for fault-tolerance and performance reasons; and ii) content delivery networks to geographically distributed clients where the content data caches may reside on different data-centers. The methods studied in the thesis are useful in various contexts of QoS management and self-configurations in large-scale cloud-based distributed systems that are inherently complex due to size, diversity, and environment dynamicity.