Date of Degree

9-2018

Document Type

Dissertation

Degree Name

Ph.D.

Program

Computer Science

Advisor

Xiaowen Zhang

Committee Members

Theodore Brown

Xiangdong Li

Lixin Tao

Subject Categories

Computer Sciences

Keywords

domain-specific search, ontology engineering, web document re-ranking, ontology hierarchy extension, supervised learning, search framework

Abstract

The goal of this research project is the realization of an artificial intelligence-driven lightweight domain knowledge search framework that returns a domain knowledge structure upon request with highly relevant web resources via a set of domain-centric re-ranking algorithms and adaptive ontology learning models. The re-ranking algorithm, a necessary mechanism to counter-play the heterogeneity and unstructured nature of web data, uses augmented queries and a hierarchical taxonomic structure to get further insight into the initial search results obtained from credited generic search engines. A semantic weight scale is applied to each node in the ontology graph and in turn generates a matrix of aggregated link relation scores that is used to compute the likely semantic correspondence between nodes and documents. Bootstrapped with a light-weight seed domain ontology, the theoretical platform focuses on the core back-end building blocks, employing two supervised automated learning models as well as semi-automated verification processes to progressively enhance, prune, and inspect the domain ontology to formulate a growing, up-to-date, and veritable system.\\ The framework provides an in-depth knowledge search platform and enhances user knowledge acquisition experience. With minimum footprint, the system stores only necessary metadata of possible domain knowledge searches, in order to provide fast fetching and caching. In addition, the re-ranking and ontology learning processes can be operated offline or in a preprocessing stage, the system therefore carries no significant overhead at runtime.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.