Date of Degree

9-2018

Document Type

Thesis

Degree Name

M.A.

Program

Linguistics

Advisor

William Sakas

Subject Categories

Computational Linguistics | Semantics and Pragmatics

Keywords

computational semantics, word vectors, semantic representation

Abstract

Semantic representation has a rich history rife with both complex linguistic theory and computational models. Though this history stretches back almost 50 years (Salton, 1971), recently the field has undergone an unexpected shift in paradigm thanks to the work of Mikolov et al., 2013(a & b) which has proven that vector-space semantic models can capture large amounts of semantic information. As of yet, these semantic representations are computed at the word level, and finding a semantic representation of a phrase is a much more difficult challenge. Mikolov et al., 2013(a&b) proved that their word vectors can be composed arithmetically to achieve reasonable representations of phrases, but this ignores syntactic information due to the commutativity of the arithmetic composition functions (addition, multiplication, etc.), causing the representation for the phrase “man bites dog” and “dog bites man” to be identical. This work hopes to introduce a way of computing word level semantic representations alongside a parse tree based approach to composing those word vectors to achieve a joint word-phrase semantic vector space. All associated code for this thesis was written in Python and can be found at https://github.com/liamge/Pytorch_ReNN.

Pytorch_ReNN.zip (2687 kB)
Code repository

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.