Date of Degree


Document Type


Degree Name





Alexander Greer

Subject Categories

Chemistry | Mechanics of Materials


Drug Delivery, Organic Photochemistry


This thesis summarizes a new micro-optic method for singlet oxygen generation and sensitizer drug delivery, which include i) synthesis and evaluation of a first generation device for drug delivery from native and fluorinated silica probe tips, ii) synthesis of PEG conjugated sensitizers to study phototoxicity in ovarian cancer cells, and iii) synthesis and evaluation of tris-PEGylated chlorin conjugated fluorinated silica for its future integration into the device to use as a 2nd generation device. A first generation micro-optic device was developed that works by sparging O2 gas and light generating cytotoxic singlet oxygen that cleaves the covalently attached drug (sensitizer) from the probe tip at the distal end of the fiber. The aim is to develop a 1st and 2nd generation device for site specific delivery of photosensitizer and singlet oxygen to overcome the challenges involved in systemic administration of the sensitizer.

Synthesis and evaluation of drug (pheophorbide-a) delivery applying micro-optic method from native and fluorinated silica probe tip was achieved. The amount of sensitizer photocleavage depends on the loading level of sensitizer onto the probe tips. We also found that photorelease efficiency depends on the nature of the solvents where sensitizer is photocleaved. For example, no photorelease was observed in an aqueous solvent where sensitizer remained adsorbed to the native silica probe-tip. But, 90% photocleavage was obtained in octanol. A significant amount of photosensitizer (formate ester of pyropheophorbide-a) diffused into the liposome when photocleavage study was carried out in liposome. Substantial increase of photorelease was observed in organic solvent when pyropheophorbide-a (PPa) sensitizer was attached to the partially fluorinated porous Vycor glass. We also explored sensitizer photorelease from the fluorinated silica surface at various temperatures and we found that autocatalytic photorelease happened at room temperature and above. No photorelease was observed at low temperature.

Chlorin e6 and its one, two and three short chain methoxy triethylene glycol (PEG) conjugated derivatives were synthesized. A comparative study of photocytotoxicity and cellular uptake between each showed that 173,152,131- chlorin e6 methoxy triethylene glycol triester has the highest photocytotoxic activity and uptake by ovarian OVCAR-5 cancer cells.

Therefore, we decided to load three short chain PEG conjugated chlorin e6 onto the silica surface through spacer alkene for delivery via a fiber-optic probe tip. In order to load chlorin e6-triPEG ester conjugate, in chapter 4, we explored different synthetic strategies. We have been successful in synthesizing spacer alkene succinate linker conjugated chlorin e6-tri PEG ester, which was attached to the fiber-optic probe tip. Reactions were carried out in mild conditions to avoid detachment of the PEG ester from the carboxylic acid sites of chlorin. Photocleavage of the triPEG modified fluorinated probe tip system was studied in n-butanol.