Dissertations, Theses, and Capstone Projects

Date of Degree


Document Type


Degree Name



Computer Science


Katherine St. John

Subject Categories

Computer Sciences


Determining the best possible evolutionary history, the lowest-cost phylogenetic tree, to fit a given set of taxa and character sequences using maximum parsimony is an active area of research due to its underlying importance in understanding biological processes. As several steps in this process are NP-Hard when using popular, biologically-motivated optimality criteria, significant amounts of resources are dedicated to both both heuristics and to making exact methods more computationally tractable. We examine both phylogenetic data and the structure of the search space in order to suggest methods to reduce the number of possible trees that must be examined to find an exact solution for any given set of taxa and associated character data. Our work on four related problems combines theoretical insight with empirical study to improve searching of the tree space. First, we show that there is a Hamiltonian path through tree space for the most common tree metrics, answering Bryant's Challenge for the minimal such path. We next examine the topology of the search space under various metrics, showing that some metrics have local maxima and minima even with "perfect" data, while some others do not. We further characterize conditions for which sequences simulated under the Jukes-Cantor model of evolution yield well-behaved search spaces. Next, we reduce the search space needed for an exact solution by splitting the set of characters into mutually-incompatible subsets of compatible characters, building trees based on the perfect phylogenies implied by these sets, and then searching in the neighborhoods of these trees. We validate this work empirically. Finally, we compare two approaches to the generalized tree alignment problem, or GTAP: Sequence alignment followed by tree search vs. Direct Optimization, on both biological and simulated data.