Date of Degree

10-2014

Document Type

Dissertation

Degree Name

Ph.D.

Program

Physics

Advisor(s)

Steve G. Greenbaum

Subject Categories

Physical Chemistry | Physics

Keywords

Nuclear Magnetic Resonance

Abstract

Energy storage materials play a key role in, efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. The improve efficiency of energy use stimulates the development of energy storage such as batteries or super capacitors, toward higher power and energy density, which significantly depends upon the advancement of new materials used in these devices. The new materials need better understanding and description in the electrochemical properties. Nuclear Magnetic Resonance (NMR) has been an important tool in the characterization of ionic liquids and solids. The measurements of the relaxation times and the diffusion coefficient are of great importance in understanding the dynamics at micro and macro scale and are performed as a function of temperature and pressure to obtain parameters such as activation energies and activation volumes respectively. In this work, studies of ionic liquids and polycarbonates are presented and the design and fabrication of cells used in the study of NMR under an electric field.

 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.