Document Type

Article

Publication Date

10-9-2018

Abstract

There are three expressions for the kinetic energy density t(r) expressed in terms of its quantal source, the single‐particle density matrix: tA(r), the integrand of the kinetic energy expectation value; tB(r), the trace of the kinetic energy tensor; tC(r), a virial form in terms of the 'classical' kinetic field. These kinetic energy densities are studied by application to 'artificial atoms' or quantum dots in a magnetic field in a ground and excited singlet state. A comparison with the densities for natural atoms and molecules in their ground state is made. The near nucleus structure of these densities for natural atoms is explained. We suggest that in theoretical frameworks which employ the kinetic energy density such as molecular fragmentation, density functional theory, and information-entropic theories, one use all three expressions on application to quantum dots, and the virial expression for natural atoms and molecules. New physics could thereby be gleaned.

Comments

This is the peer-reviewed version of the following article: Slamet, M., & Sahni, V. (2018). Study of the kinetic energy densities of electrons as applied to quantum dots in a magnetic field. International Journal of Quantum Chemistry, e25818, which has been published in final form at https://doi.org/10.1002/qua.25818. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.