Publications and Research

Document Type

Article

Publication Date

4-18-2006

Abstract

Abstract:

We show that a stably ergodic diffeomorphism can be C1 approximated by a diffeomorphism having stably non-zero Lyapunov exponents.

Résumé:

On montre qu'un difféomorphisme stablement ergodique peut être C1 approché par un difféomorphisme ayant des exposants de Lyapunov stablement non-nuls.

Comments

This article was originally published in Comptes Rendus Mathématique, available at https://doi.org/10.1016/j.crma.2006.03.028

Alternative title: Une remarque sur les difféomorphismes conservatifs

This work is distributed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.