Publications and Research
Document Type
Article
Publication Date
1-24-2019
Abstract
We conduct a comprehensive investigation of the effect of an applied electric field on the optical and magneto-optical absorption spectra for AB-bt (bottom-top) bilayer silicene. The generalized tightbinding model in conjunction with the Kubo formula is efficiently employed in the numerical calculations. The electronic and optical properties are greatly diversified by the buckled lattice structure, stacking configuration, intralayer and interlayer hopping interactions, spin-orbital couplings, as well as the electric and magnetic fields (Ez ˆz & Bz ˆz ). An electric field induces spin-split electronic states, a semiconductor-metal phase transitions and the Dirac cone formations in different valleys, leading to the special absorption features. The Ez-dependent low-lying Landau levels possess lower degeneracy, valley-created localization centers, peculiar distributions of quantum numbers, well-behaved and abnormal energy spectra in Bz-dependencies, and the absence of anti-crossing behavior. Consequently, the specific magneto-optical selection rules exist for diverse excitation categories under certain critical electric fields. The optical gaps are reduced as Ez is increased, but enhanced by Bz, in which the threshold channel might dramatically change in the former case. These characteristics are in sharp contrast with those for layered graphene.
Comments
This article was originally published in Scientific Reports, available at DOI:10.1038/s41598-018-36547-1.
This article is licensed under a Creative Commons Attribution 4.0 International License.