Publications and Research

Document Type


Publication Date



Motivation: An unsolved fundamental problem in biology is to predict phenotypes from a new genotype under environmental perturbations. The emergence of multiple omics data provides new opportunities but imposes great challenges in the predictive modeling of genotype-phenotype associations. Firstly, the high-dimensionality of genomics data and the lack of coherent labeled data often make the existing supervised learning techniques less successful. Secondly, it is challenging to integrate heterogeneous omics data from different resources. Finally,few works have explicitly modeled the information transmission from DNA to phenotype, which involves multiple intermediate molecular types. Higher-level features (e.g. gene expression) usually have stronger discriminative andinterpretable power than lower-level features (e.g. somatic mutation).

Results: We propose a novel Cross-LEvel Information Transmission (CLEIT) network framework to address the above issues. CLEIT aims to represent the asymmetrical multi-level organization of the biological system by integrating multiple incoherent omics data and to improve the prediction power of low-level features. CLEIT first learns the latent representation of the high-level domain then uses it as ground-truth embedding to improve the representation learn-ing of the low-level domain in the form of contrastive loss. Besides, CLEIT can leverage the unlabeled heterogeneous omics data to improve the generalizability of the predictive model. We demonstrate the effectiveness and significant performance boost of CLEIT in predicting anti-cancer drug sensitivity from somatic mutations via the assistance of gene expressions when compared with state-of-the-art methods. CLEIT provides a general framework to model in-formation transmissions and integrate multi-modal data in a multi-level system.


Article was originally published in Bioinformatics available at

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (,which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.