Publications and Research
Exact operator Hamiltonians and interactions in the droplet bosonization method
Abstract
We derive the exact form of the bosonized Hamiltonian for a many-body fermion system in one spatial dimension with arbitrary dispersion relations, using the droplet bosonization method. For a single-particle Hamiltonian polynomial in the momentum, the bosonized Hamiltonian is a polynomial of one degree higher in the bosonic "boundary" field and includes subleading lower-order and derivative terms. This generalizes the known results for massless relativistic and nonrelativistic fermions (quadratic and cubic bosonic Hamiltonians, respectively). We also consider two-body interactions and demonstrate that they lead to interesting collective behavior and phase transitions in the Fermi sea.