Publications and Research

Document Type


Publication Date

May 2007


Hybridization is an important evolutionary process for many groups of species. Thus, conflicting signals in a data set may not be the result of sampling or modeling errors, but due to the fact that hybridization has played a significant role in the evolutionary history of the species under consideration. Assuming that the initial set of gene trees is correct, a basic problem for biologists is to compute this minimum number of hybridization events to explain this set. In this paper, we describe a new reduction-based algorithm for computing the minimum number, when the initial data set consists of two trees. Although the two-tree problem is NP-hard, our algorithm always gives the exact solution and runs efficiently on many real biological problems. Previous algorithms for the two-tree problem either solve a restricted version of the problem or give an answer with no guarantee of the closeness to the exact solution. We illustrate our algorithm on a grass data set. This new algorithm is freely available for application at either or


This work was originally published in Evolutionary Bioinformatics Online.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.