Publications and Research

Document Type


Publication Date

April 2015


Water molecules in the active site of an enzyme occupy a complex, heterogeneous environment, and the thermodynamic properties of active-site water are functions of position. As a consequence, it is thought that an enzyme inhibitor can gain affinity by extending into a region occupied by unfavorable water or lose affinity by displacing water from a region where it was relatively stable. Recent advances in the characterization of binding-site water, based on the analysis of molecular simulations with explicit water molecules, have focused largely on simplified representations of water as occupying well-defined hydration sites. Our grid-based treatment of hydration, GIST, offers a more complete picture of the complex distributions of water properties, but it has not yet been applied to proteins. This first application of GIST to protein–ligand modeling, for the case of Coagulation Factor Xa, shows that ligand scoring functions based on GIST perform at least as well as scoring functions based on a hydration-site approach (HSA), when applied to exactly the same simulation data. Interestingly, the displacement of energetically unfavorable water emerges as the dominant factor in the fitted scoring functions, for both GIST and HSA methods, while water entropy plays a secondary role, at least in the present context.


This work was originally published in Journal of Chemical Theory and Computation, available at doi:10.1021/ct401110x.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.