Publications and Research
Document Type
Article
Publication Date
2008
Abstract
Retinal progenitor cells (RPCs) can be combined with nanostructured polymer scaffolds to generate compos- ite grafts in culture. One strategy for repair of diseased retinal tissue involves implantation of composite grafts of this type in the subretinal space. In the present study, mouse retinal progenitor cells (RPCs) were cultured on laminin- coated novel nanowire poly(e-caprolactone)(PCL) scaf- folds, and the survival, differentiation, and migration of these cells into the retina of C57bl/6 and rhodospsin −/−mouse retinal explants and transplant recipients were analyzed. RPCs were cultured on smooth PCL and both short (2.5μm) and long (27μ m) nanowire PCL scaffolds. Scaffolds with adherent mRPCs were then either co-cultured with, or transplanted to, wild-type and rhodopsin − / − mouse retina. Robust RPC proliferation on each type of PCL scaffold was observed. Immunohistochemistry revealed that RPCs cultured on nanowire scaffolds increased expression of mature bipolar and photoreceptor markers. Reverse tran- scription polymerase chain reaction revealed down-regula- tion of several early progenitor markers. PCL-delivered RPCs migrated into the retina of both wild-type and rhodopsin knockout mice. The results provide evidence that RPCs proliferate and express mature retinal proteins in response to interactions with nanowire scaffolds. These composite grafts allow for the migration and differentiation of new cells into normal and degenerated retina.
Comments
This work was originally published in Journal of Ocular Biology, Diseases, and Informatics.