Publications and Research
Document Type
Article
Publication Date
5-7-2025
Abstract
Characterizing imaging performance requires a multidisciplinary approach that evaluates various interconnected parameters, including dosage optimization and dynamic accuracy. Radiation dose and dynamic accuracy are challenged by patient motion that results in poor image quality. These challenges are more prevalent in the brain/cardiac pediatric patient imaging, as they relate to excess radiation dose that may be associated with various complications. Scanning vulnerable pediatric patients ought to eliminate anesthesia due to critical risks associated in some cases with intracranial hemorrhages, brain strokes, and congenital heart disease. Some pediatric imaging, however, requires prolonged scanning under anesthesia. It can often be a laborious, suboptimal process, with limited field of view and considerable dose. High dynamic accuracy is also necessary to diagnose tissue’s dynamic behavior beyond its static structural morphology. This study presents several performance characterization experiments from a new robotic multimodal imaging system using specially designed calibration methods at different system configurations. Additional musculoskeletal imaging and imaging from a pediatric brain stroke patient without anesthesia are presented for comparisons. The findings suggest that the system’s large dynamically controlled gantry enables scanning at full patient movement and with important improvements in scan times, accuracy, radiation dose, and the ability to image brain structures without anesthesia. This could position the system as a potential transformative tool in the pediatric interventional imaging landscape.
Included in
Bioimaging and Biomedical Optics Commons, Biomedical Informatics Commons, Investigative Techniques Commons, Radiology Commons

Comments
This article was originally published in Journal of Imaging, available at https://doi.org/10.3390/jimaging11050147
This work is distributed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).