Publications and Research

Document Type


Publication Date



In introductory programming courses, proficiency is typically achieved through substantial practice in the form of relatively small assignments and quizzes. Unfortunately, creating programming assignments and quizzes is both, time-consuming and error-prone. We use Automatic Item Generation (AIG) in order to address the problem of creating numerous programming exercises that can be used for assignments or quizzes in introductory programming courses. AIG is based on the use of test-item templates with embedded variables and formulas which are resolved by a computer program with actual values to generate test-items. Thus, hundreds or even thousands of test-items can be generated with a single test-item template. We present a semantic-based AIG that uses linked open data (LOD) and automatically generates contextual programming exercises. The approach was incorporated into an existing self-assessment and practice tool for students learning computer programming. The tool has been used in different introductory programming courses to generate a set of practice exercises different for each student, but with the same difficulty and quality.


This is an Accepted Manuscript of an article published by SIGCSE '18 Proceedings of the 49th ACM Technical Symposium on Computer Science Education available online: DOI:10.1145/3159450.3159608



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.