Publications and Research

Document Type


Publication Date



Biodiversity reduction and loss continues to progress at an alarming rate, and thus there is widespread interest in utilizing rapid and efficient methods for quantifying and delimiting taxonomic diversity. Single-locus species-delimitation methods have become popular, in part due to the adoption of the DNA barcoding paradigm. These techniques can be broadly classified into tree-based and distance-based methods depending on whether species are delimited based on a constructed genealogy. Although the relative performance of these methods has been tested repeatedly with simulations, additional studies are needed to assess congruence with empirical data. We compiled a large data set of mitochondrial ND4 sequences from horned lizards (Phrynosoma) to elucidate congruence using four tree-based (single-threshold GMYC, multiple-threshold GMYC, bPTP, mPTP) and one distance-based (ABGD) species delimitation models. We were particularly interested in cases with highly uneven sampling and/or large differences in intraspecific diversity. Results showed a high degree of discordance among methods, with multiple-threshold GMYC and bPTP suggesting an unrealistically high number of species (29 and 26 species within the P. douglasii complex alone). The single-threshold GMYC model was the most conservative, likely a result of difficulty in locating the inflection point in the genealogies. mPTP and ABGD appeared to be the most stable across sampling regimes and suggested the presence of additional cryptic species that warrant further investigation. These results suggest that the mPTP model may be preferable in empirical data sets with highly uneven sampling or large differences in effective population sizes of species.


This is the peer reviewed version of the following article: Blair, C., & Bryson, R. W. (2017). Cryptic diversity and discordance in single‐locus species delimitation methods within horned lizards (Phrynosomatidae: Phrynosoma). Molecular ecology resources, 17(6), 1168-1182, which has been published in final form at This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.