Publications and Research

Document Type


Publication Date



Substituted xylans play an important role in the structure and mechanics of the primary cell wall of plants. Arabinoxylans (AX) consist of a xylose backbone substituted with arabinose, while glucuronoarabinoxylans (GAX) also contain glucuronic acid substitutions and ferulic acid esters on some of the arabinoses. We provide a molecular-level description on the dependence of xylan conformational, selfaggregation properties and binding to cellulose on the degree of arabinose substitution. Molecular dynamics simulations reveal fully solubilized xylans with a low degree of arabinose substitution (lsAX) to be stiffer than their highly substituted (hsAX) counterparts. Small-angle neutron scattering experiments indicate that both wild-type hsAX and debranched lsAX form macromolecular networks that are penetrated by water. In those networks, lsAX are more folded and entangled than hsAX chains. Increased conformational entropy upon network formation for hsAX contributes to AX loss of solubility upon debranching. Furthermore, simulations show the intermolecular contacts to cellulose are not affected by arabinose substitution (within the margin of error). Ferulic acid is the GAX moiety found here to bind to cellulose most strongly, suggesting it may play an anchoring role to strengthen GAX-cellulose interactions. The above results suggest highly substituted GAX acts as a spacer, keeping cellulose microfibrils apart, whereas low substitution GAX is more localized in plant cell walls and promotes cellulose bundling.


This is a post-peer-review, pre-copyedit version of an article published in Cellulose. The final authenticated version is available online at:



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.