Publications and Research

Document Type

Book Chapter or Section

Publication Date



In this research, the modeling, design, fabrication, and application of ECIS sensors in environmental monitoringare studied. The ECIS sensors are able to qualify the water toxicity through measuring the cell impedance. A novel mathematical model is proposed to analyze the distribution of electric potential and current of ECIS. This mathematical model is validated by experimental data and can be used to optimize the dimension of ECIS electrodes in order to satisfy environmental monitors. The detection sensitivity of ECIS sensors is analyzed by the mathematical model and experimental data. The simulated and experimental results show that ECIS sensors with smaller radius of working electrodes yield higher impedance values, which improves signal-to-noise ratio, which is more suitable in measuring the cell morphology change influenced by environments. Several ECIS sensors are used to detect the toxicant including, phenol, ammonia, nicotine, and aldicarb, and the decreasing cell impedance indicates the toxic effect. The gradient of measured impedance qualitatively indicates the concentration of toxicants in water.


This work was originally published in Intech Open, available at DOI: 10.5772/intechopen.8117.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative Commons Attribution 3.0 License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.