Publications and Research

Document Type


Publication Date



Exciton-dipolaritons are investigated as a platform for realizing working elements of a polaritronic transistor. Exciton-dipolaritons are three-way superposition of cavity photons, direct and indirect excitons in a bilayer semiconducting system embedded in an optical microcavity. Using the forced diffusion equation for dipolaritons, we study the room-temperature dynamics of dipolaritons in a transition-metal dichalcogenide (TMD) heterogeneous bilayer. Specifically, we considered a MoSe2-WS2 heterostructure, where a Y-shaped channel guiding the dipolariton propagation is produced. We demonstrate that polaritronic signals can be redistributed in the channels by applying a driving voltage in an optimal direction. Our findings open a route towards the design of an efficient room-temperature dipolariton-based optical transistor.


Preprint of Serafin, Patrick, Tim Byrnes, and German V. Kolmakov. "Driven dipolariton transistors in Y-shaped channels." Physics Letters A 384, no. 34 (2020): 126855.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.