Publications and Research

Document Type

Article

Publication Date

2-26-2021

Abstract

The propulsion of living microorganisms ultimately relies on viscous drag for body-fluid interactions. The self-locomotion in superfluids such as 4He is deemed impossible due to the apparent lack of viscous resistance. Here, we investigate the self-propulsion of a Janus (two-face) light-absorbing particle suspended in superfluid helium 4He (He-II). The particle is energized by the heat flux due to the absorption of light from an external source. We show that a quantum mechanical propulsion force originates due to the transformation of the superfluid to a normal fluid on the heated particle face. The theoretical analysis is supported by the numerical solution of the Ginzburg-Landau-Khalatnikov model for a superfluid. Our results shed light on the dynamics of inclusions in a superfluid and stimulate experiments.

Comments

Kolmakov, G. V., & Aranson, I. S. (2021). Superfluid swimmers. Physical Review Research, 3(1), 013188, https://doi.org/10.1103/PhysRevResearch.3.013188.

The article is distributed under a Creative Commons Attribution (CC-BY 4.0) License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.