Publications and Research

Document Type

Article

Publication Date

10-26-2017

Abstract

Photoluminescent divinylbipyrroles were synthesized from 3,3′,4,4′-tetraetyl-2,2′-bipyrrole-5,5′-dicarboxaldehyde and activated methylene compounds via aldol condensation.For mechanistic clarity, molecular structures of Meldrum’s acid- and 1,3-dimethylbarbituricacid-derived divinylbipyrroles were determined by single-crystal X-ray diffraction. Photoluminescentproperties of the synthesized divinylbipyrroles in dichloromethane were found to be dependent onthe presence of electron withdrawing groups at the vinylic terminal. The divinylbipyrroles derivedfrom malononitrile, Meldrum’s acid, and 1,3-dimethylbarbituric acid showed fluorescent peaks at553, 576, and 602 nm respectively. Computational studies indicated that the alkyl substituents on thebipyrrole 3 and 3′positions increased energy level of the highest occupied molecular orbital (HOMO)compared to the unsubstituted derivatives and provided rationale for the bathochromic shift of theultraviolet-visible (UV-Vis) spectra compared to the previously reported analogs.

Comments

This article was originally published in Molecules, available at DOI:10.3390/molecules22111816.

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY 4.0) license (http://creativecommons.org/licenses/by/4.0/).

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.