Publications and Research
Document Type
Article
Publication Date
1-2014
Abstract
Purpose: To determine whether short-term pressure elevation affects complement gene expression in the retina in vitro and in vivo.
Methods: Muller cell (TR-MUL5) cultures and organotypic retinal cultures from adult mice and monkeys were sub- jected to either 24-h or 72-h of pressure at 0, 15, 30, and 45 mmHg above ambient. C57BL/6 mice were subjected to microbead-induced intraocular pressure (IOP) elevation for 7 days. RNA and protein were extracted and used for analysis of expression levels of complement component genes and complement component 1, q subcomponent (C1q) and comple- ment factor H (CFH) immunoblotting.
Results: mRNA levels of complement genes and C1q protein levels in Muller cell cultures remained the same for all pressure levels after exposure for either 24 or 72 h. In primate and murine organotypic cultures, pressure elevation did not produce changes in complement gene expression or C1q and CFH protein levels at either the 24-h or 72-h time points. Pressure-related glial fibrillary acidic protein (GFAP) mRNA expression changes were detected in primate retinal organotypic cultures (analysis of variance [ANOVA]; p0.05 for both) with contralateral control and naïve control eyes.
Conclusions: Short-term elevation of pressure in vitro as well as short-term (1 week) IOP elevation in vivo does not seem to dramatically alter complement system gene expression in the retina. Prolonged expression to elevated pressure may be necessary to affect the complement system expression.
Included in
Medical Cell Biology Commons, Medical Genetics Commons, Medical Physiology Commons, Ophthalmology Commons
Comments
This work was originally published in Molecular Vision.