Document Type
Article
Publication Date
2021
Abstract
Hyperbolic metasurfaces are characterized by an extreme anisotropy of their effective conductivity tensor, which may be induced at visible frequencies by sculpting metals at the subwavelength scale. In this work, we explore practical implementations of hyperbolic metasurfaces at mid-infrared wavelengths, exploiting devices composed of metals and high-index semiconductor materials, which can support the required field confinement and extreme anisotropy required to realize low loss hyperbolic surface waves. In particular, we discuss the role of broken symmetries in these hybrid metasurfaces to enable large and broadband hyperbolic responses spanning the entire mid-infrared wavelength range (3–30 μm). Our findings pave the way to the development of large scale nanophotonic devices to manipulate mid-infrared light, with applications in nonlinear optics due to the high field confinement, light routing at the nanoscale, thermal control and management, and sub diffraction imaging.
Comments
This article was originally published in Journal of Physics: Photonics, available at https://doi.org/10.1088/2515-7647/abfecc
This work is distributed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).