Student Theses and Dissertations
Date of Award
Winter 1-19-2016
Document Type
Thesis
Degree Name
B.S. with honors
Honors Designation
yes
Program of Study
Chemistry
Language
English
First Advisor
Chandrika Kulatilleke
Second Advisor
Pablo Peixoto
Third Advisor
Joel Brind
Abstract
Toxic heavy metal poisoning with metals including lead, mercury, and cadmium, whether in the environment or through ingestion, remains a persistent problem. Remediation of metal contamination and poisoning has generally been treated with chelating agents that bind metals, rendering them inert, and allow for easier removal. Chelation involves the formation of two or more separate coordinate covalent bonds between a polydentate ligand and a single central atom. However, chelators are not without side effects. Due to the similar size of metal ions and lack of specificity of ligands, chelators can also remove beneficial metals like iron and zinc from the body. This thesis focuses on identifying macrocyclic chelators that will bind specifically to toxic heavy metals and not physiologically important transition metals such as iron and zinc. It is well known that toxic metals have an affinity for sulfurs and therefore macrocyclic thiaethers are potential chelating agents for these toxic metals. The macrocycle 1,4,7-Trithiacyclononane ([9]aneS3) is the ligand of interest for this study due to its small cavity size. Previous studies (unpublished) indicated that [9]aneS3 binds mercury very strongly. This study probes further into the strength of metal-ligand complexes of 1,4,7-Trithiacyclononane with first row transition metals by using absorbance values measured with UV-Visible spectroscopy. Stability constant calculations were performed based on the McConnell-Davidson equation. Molar extinction coefficients (€) of M([9]aneS3)2 2+ complexes were determined to be in the range of 10000 – 34000 M-1 cm-1 . The stability constants (log β) of M([9]aneS3)2 2+ were found to be in the range of 1.4– 4.9 (Table 7). These results show that the chelator, 1,4,7-Trithiacyclononane binds several first row transition metal ions weakly. This weak binding with transition metals yet strong binding with mercury suggests that 1,4,7-Trithiacyclononane may function as a potential selective chelator for mercury. The ratio of metal to ligand complexes was also determined using Job’s plot analysis. Results show that first row transition metals bind to the ligand in a ratio of 1:2. This suggests that the ligand 1,4,7-Trithiacyclononane, presumably binds metal ions in an octahedral geometry, where the metal ion is sandwiched between two molecules of ligands. In this preferential geometry the metal ion is bound to six sulfur atoms from two ligand molecules. Taken together, these results help us understand binding preferences and mechanisms of transition metals and toxic heavy metals towards macrocyclic thiaethers.
Recommended Citation
Bakhtari, Nahid, "Characterization of 1, 4, 7-Trithiacyclononane, [9]aneS3 as a Potential Toxic Heavy Metal Chelator" (2016). CUNY Academic Works.
https://academicworks.cuny.edu/bb_etds/103