Publications and Research

Document Type

Article

Publication Date

11-24-2019

Abstract

A two-dimensional pulse sequence is introduced for correlating nuclear magnetic resonance anisotropic chemical shifts to a relaxation time (e.g., T1) in solids under static conditions. The sequence begins with a preparatory stage for measuring relaxation times, and is followed by a multiple pulse sequence for homonuclear dipolar decoupling. Data analysis involves the use of Fourier transform, followed by a one-dimensional inverse Laplace transform for each frequency index. Experimental results acquired on solid samples demonstrate the general approach, and additional variations involving heteronuclear decoupling and magic angle spinning are discussed.

Comments

This article was originally published in the International Journal of Molecular Sciences, available at doi:10.3390/ijms20235888.

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Included in

Physics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.