Publications and Research
Document Type
Article
Publication Date
3-2-2020
Abstract
Designing an effective conservation strategy requires understanding where rare species are located. Because rare species can be difficult to find, ecologists often identify other species called conservation surrogates that can help inform the distribution of rare species. Species distribution models typically rely on environmental data when predicting the occurrence of species, neglecting the effect of species' co-occurrences and biotic interactions. Here, we present a new approach that uses Bayesian networks to improve predictions by modeling environmental co-responses among species. For species from a European peat bog community, our approach consistently performs better than single-species models and better than conventional multi-species approaches that include the presence of nontarget species as additional independent variables in regression models. Our approach performs particularly well with rare species and when calibration data are limited. Furthermore, we identify a group of “predictor species” that are relatively common, insensitive to the presence of other species, and can be used to improve occurrence predictions of rare species. Predictor species are distinct from other categories of conservation surrogates such as umbrella or indicator species, which motivates focused data collection of predictor species to enhance conservation practices.
Comments
This work was originally published in Ecology and Evolution, available at DOI: 10.1002/ece3.6096
This is an open access article under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.