Publications and Research

Document Type

Article

Publication Date

6-10-2019

Abstract

Soils retain lead contamination from possible sources such as mining, smelting, battery recycling, waste incineration, leaded gasoline, and crumbling paint. Such contamination is often concentrated in toxic hot spots that need to be identified locally. To address this need, a simple field procedure was designed to screen soil for hazardous Pb for use by the general public. The procedure is a modification of the in vitro soil Pb extraction described by Drexler and Brattin (Hum. Ecol. Risk Assess. 2007, 13, 383) and EPA Method 1340, and uses a 0.4 M glycine solution at pH 1.5. A higher soil-to-solution ratio of 1:10 allows for classifying soil samples based on extractable Pb concentrations of/ kg (low), 200−400 mg/kg (medium), and >400 mg/kg (high) using sodium rhodizonate as a color indicator. The 1:10 soil-to-solution ratio also makes it possible to measure Pb concentrations in the glycine extract solutions on a continuous scale using a portable X-ray fluorescence analyzer. The procedure rather consistently extracts about one-third of the Pb extracted by the standard method across a wide range of Pb concentrations. Manufacturing the kit in larger quantities could reduce the cost of the materials well below the current $5/test.

Comments

This work was originally published in Analytical Chemistry, available at DOI: 10.1021/acs.analchem.9b00681

This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.