Publications and Research
Document Type
Article
Publication Date
January 1970
Abstract
Space-clamped squid axons treated with low calcium and computed Hodgkin-Huxley (HH) axons were stimulated by steps of superthreshold current from 101 to 400% of the rheobasic value over a temperature range of 5–27°C. The natural frequency of sustained repetitive firing of real and computed axons depended weakly upon stimulus intensity and strongly upon temperature, with a Q10 of 2.7 (experimental) and 2.6 (computed). For real axons, but not the computed axon, the intervals between the first two spikes were shorter than between subsequent spikes. Constant spike frequencies from 75 Hz at low intensities and temperatures to 330 Hz at high intensities and temperatures were soon achieved. Subthreshold and superthreshold responses were sometimes intermixed in a train of responses from a real axon responding to a constant step of current, but not predicted by HH. The time interval following a spike was always longer than that following a subthreshold oscillation in slightly decalcified real axons, as Huxley and FitzHugh also found for computed axons. There was a bias toward spikes at the beginning of the train and toward subthreshold responses later on. Some repeated patterns were found, every second, third, or fourth response being a spike. Neither the HH equations nor the computed or experimental threshold behaviors show a critical temperature to support a membrane phase transition.
Comments
This work was originally published in The Journal of General Physiology.