Publications and Research
Document Type
Article
Publication Date
11-13-2011
Abstract
The phosphoesterase (PE) domain of the bacterial DNA repair enzyme LigD possesses distinctive manganese-dependent 3'-phosphomonoesterase and 3'-phosphodiesterase activities. PE exemplifies a new family of DNA end-healing enzymes found in all phylogenetic domains. Here, we determined the structure of the PE domain of Pseudomonas aeruginosa LigD (PaePE) using solution NMR methodology. PaePE has a disordered N-terminus and a well-folded core that differs in instructive ways from the crystal structure of a PaePE•Mn(2+)• sulfate complex, especially at the active site that is found to be conformationally dynamic. Chemical shift perturbations in the presence of primertemplate duplexes with 30-deoxynucleotide, 3'-deoxynucleotide 3'-phosphate, or 3' ribonucleotide termini reveal the surface used by PaePE to bind substrate DNA and suggest a more efficient engagement in the presence of a 30-ribonucleotide. Spectral perturbations measured in the presence of weakly catalytic (Cd2+) and inhibitory (Zn2+) metals provide evidence for significant conformational changes at and near the active site, compared to the relatively modest changes elicited by Mn2+.
Comments
This article originally appeared in Nucleic Acids Research, available at DOI:10.1093/nar/gkr950
©The Author(s) 2011. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/ by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.