Publications and Research

Document Type

Article

Publication Date

3-2-2016

Abstract

This work provides new insights in the field of applied photochemistry based on semiconductor-free nanoporous carbons and its application to sunlight energy harvesting. Using carbon materials of increasing average pore size, chemical functionalization to introduce a variety of O- and S-containing functional groups and monochromatic light, we have shown the dependence of the photochemical conversion of phenol in the confinement of the carbons nanopore space with the wavelength of the irradiation source, the dimensions of the pore voids and their surface chemistry. The photochemical conversion of phenol inside the carbons pore space was found to be very sensitive to the nature of the Scontaining groups and the confinement state of the adsorbed pollutant.

Comments

This article was originally published in Carbon, available at DOI: 10.1016/j.carbon.2016.02.058.

This article was distributed under the CC-BY-NC-ND license.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.