Publications and Research

Document Type

Article

Publication Date

4-16-2016

Abstract

In this paper, the impact of clustering multiple microgrids during blackouts, on their stability and supply availability, will be investigated. Microgrids have the capability of satisfying their emergency loads during blackouts. However, distributed energy resources (DERs)-dominated microgrids are affected by the uncertainty of their input energy supply, e.g. impact of solar irradiance on photovoltaic (PV) output. Moreover, an individual islanded microgrid is prone to instability issues due to large sudden load/generation changes. In order to increase the supply security, and enhance system stability, we propose to use the existing distribution grid infrastructure, if applicable, during blackouts to form microgrid clusters. The paper discusses the required control hierarchy required to manage the microgrid clusters, and communicate with the Distribution Network Operator (DNO). A case study based on the 13-bus standard distribution feeder, and two microgrid models, is presented. Results show that microgrids clustering helps improve their performance and that the microgrid generator inertia has a direct impact on the stability of the microgrid cluster.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.