Publications and Research
Document Type
Article
Publication Date
10-26-2016
Abstract
The negatively charged nitrogen vacancy (NV−) center in diamond is the focus of widespread attention for applications ranging from quantum information processing to nanoscale metrology. Althoughmostwork so far has focused on the NV− optical and spin properties, control of the charge state promises complementary opportunities. One intriguing possibility is the long-term storage of information, a notion we hereby introduce using NV-rich, type 1b diamond. As a proof of principle, we use multicolor optical microscopy to read, write, and reset arbitrary data sets with twodimensional (2D) binary bit density comparable to present digital-video-disk (DVD) technology. Leveraging on the singular dynamics of NV− ionization, we encode information on different planes of the diamond crystal with no crosstalk, hence extending the storage capacity to three dimensions. Furthermore, we correlate the center’s charge state and the nuclear spin polarization of the nitrogen host and showthat the latter is robust to a cycle of NV− ionization and recharge. In combination with super-resolution microscopy techniques, these observations provide a route toward subdiffraction NV charge control, a regime where the storage capacity could exceed present technologies.
Comments
This article was originally published in Science Advances, available at DOI: 10.1126/sciadv.1600911.
This article is distributed under a Creative Commons Non-Commercial Attribution License 4.0 (CC BY-NC).