Publications and Research

Document Type

Article

Publication Date

2014

Abstract

The autonomously trading agents described in this paper produce a decision to act such as: buy, sell or hold, based on the input data. In this work, we have simulated autonomously trading agents using the Echo State Network (ESNs) model. We generate a collection of trading agents that use different trading strategies using Evolutionary Programming (EP). The agents are tested on EUR/ USD real market data. The main goal of this study is to test the overall performance of this collection of agents when they are active simultaneously. Simulation results show that using different agents concurrently outperform a single agent acting alone.

Comments

This article was originally published in Intelligent Information Management, available at DOI: 10.4236/iim.2014.62007.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.